A computational study on robust portfolio selection based on a joint ellipsoidal uncertainty set
نویسنده
چکیده
The “separable” uncertainty sets have beenwidely used in robust portfolio selection models [e.g., see Erdoğan et al. (Robust portfolio management. manuscript, Department of Industrial Engineering and Operations Research, Columbia University, New York, 2004), Goldfarb and Iyengar (Math Oper Res 28:1–38, 2003), Tütüncü and Koenig (Ann Oper Res 132:157–187, 2004)]. For these uncertainty sets, each type of uncertain parameters (e.g., mean and covariance) has its own uncertainty set. As addressed in Lu (A new cone programming approach for robust portfolio selection, technical report, Department ofMathematics, Simon Fraser University, Burnaby, 2006; Robust portfolio selection based on a joint ellipsoidal uncertainty set, manuscript, Department of Mathematics, Simon Fraser University, Burnaby, 2008), these “separable” uncertainty sets typically share two common properties: (i) their actual confidence level, namely, the probability of uncertain parameters falling within the uncertainty set is unknown, and it can be much higher than the desired one; and (ii) they are fully or partially box-type. The associated consequences are that the resulting robust portfolios can be too conservative, and moreover, they are usually highly non-diversified as observed in the computational experiments conducted in this paper and Tütüncü and Koenig (Ann Oper Res 132:157–187, 2004). To combat these drawbacks, the author of this paper introduced a “joint” ellipsoidal uncertainty set (Lu in A new cone programming approach for robust portfolio selection, technical report, Department of Mathematics, Simon Fraser University, Burnaby, 2006; Robust portfolio selection based on a joint ellipsoidal uncertainty set, manuscript, Department of Mathematics, Simon Fraser University, Burnaby, 2008) and showed that it can be Z. Lu was supported in part by SFU President’s Research Grant and NSERC Discovery Grant. Z. Lu (B) Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada e-mail: [email protected]
منابع مشابه
Robust portfolio selection based on a joint ellipsoidal uncertainty set
‘Separable’ uncertainty sets have been widely used in robust portfolio selection models (e.g. see [E. Erdoğan, D. Goldfarb, and G. Iyengar, Robust portfolio management, manuscript, Department of Industrial Engineering and Operations Research, Columbia University, New York, 2004; D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Math. Oper. Res. 28 (2003), pp. 1–38; R.H. Tütüncü a...
متن کاملRobustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملA New Cone Programming Approach for Robust Portfolio Selection
The robust portfolio selection problems have recently been studied by several researchers (e.g., see [15, 14, 17, 25]). In their work, the “separable” uncertainty sets of the problem parameters (e.g., mean and covariance of the random returns) were considered. These uncertainty sets share two common drawbacks: i) the actual confidence level of the uncertainty set is unknown, and it can be much ...
متن کاملPrimal and dual robust counterparts of uncertain linear programs: an application to portfolio selection
This paper proposes a family of robust counterpart for uncertain linear programs (LP) which is obtained for a general definition of the uncertainty region. The relationship between uncertainty sets using norm bod-ies and their corresponding robust counterparts defined by dual norms is presented. Those properties lead us to characterize primal and dual robust counterparts. The researchers show t...
متن کاملمدل میانگین انحراف مطلق با عدم قطعیت روی بازدهها برای بهینه سازی سبد سهام
In this paper, mean absolute deviation model for optimal portfolio selection problem is studied. Due to the uncertainty in the observed returns from financial markets, an improved robust formulation based on Bertsimas and Sim approach is presented. Then we study the robust model of the problem under correlated uncertainty set and give its equivalent model. Finally, the performance of the imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 126 شماره
صفحات -
تاریخ انتشار 2011